Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33452032

RESUMEN

Pseudomonas chlororaphis YL-1 has extensive antimicrobial activities against phytopathogens, and its genome harbors a pyoverdine (PVD) biosynthesis gene cluster. The alternative sigma factor PvdS in Pseudomonas aeruginosa PAO1 acts as a critical regulator in response to iron starvation. The assembly of the PVD backbone starts with peptide synthetase enzyme PvdL. PvdF catalyzes formylation of l-OH-Orn to produce l-N5-hydroxyornithine. Here, we describe the characterization of PVD production in YL-1 and its antimicrobial activity in comparison with that of its PVD-deficient ΔpvdS, ΔpvdF, and ΔpvdL mutants, which were obtained using a sacB-based site-specific mutagenesis strategy. Using in vitro methods, we examined the effect of exogenous iron under low-iron conditions and an iron-chelating agent under iron-sufficient conditions on PVD production, antibacterial activity, and the relative expression of the PVD transcription factor gene pvdS in YL-1. We found that strain YL-1, the ΔpvdF mutant, and the ΔpvdS(pUCP26-pvdS) complemented strain produced visible PVDs and demonstrated a wide range of inhibitory effects against Gram-negative and Gram-positive bacteria in vitro under low-iron conditions and that with the increase of iron, its PVD production and antibacterial activity were reduced. The antibacterial compounds produced by strain YL-1 under low-iron conditions were PVDs based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Moreover, the antibacterial activity observed in vitro was correlated with in vivo control efficacies of strain YL-1 against rice bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae. Collectively, PVDs are responsible for the antibacterial activities of strain YL-1 under both natural and induced low-iron conditions.IMPORTANCE The results demonstrated that PVDs are essential for the broad-spectrum antibacterial activities of strain YL-1 against both Gram-positive and Gram-negative bacteria under low-iron conditions. Our findings also highlight the effect of exogenous iron on the production of PVD and the importance of this bacterial product in bacterial interactions. As a biocontrol agent, PVDs can directly inhibit the proliferation of the tested bacteria in addition to participating in iron competition.


Asunto(s)
Antibacterianos/farmacología , Hierro/metabolismo , Oligopéptidos/farmacología , Pseudomonas chlororaphis/metabolismo , Antibacterianos/química , Cromatografía Liquida , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Oligopéptidos/química , Pseudomonas chlororaphis/química , Pseudomonas chlororaphis/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...